ОГЛАВЛЕНИЕ

СПИСОК ОБОЗНАЧЕНИЙ И СОКРАЩЕНИЙ	3
ПРЕДИСЛОВИЕ	4
ВВЕДЕНИЕ. Краткий экскурс в историю развития	
индикаторного метода	8
1. ПОВЕРХНОСТЬ ТВЕРДЫХ ВЕЩЕСТВ	
1.1. Неоднородность поверхности твердофазных систем	17
1.2. Твердые кислоты и основания	20
1.3. Донорно-акцепторная модель поверхности	
твердого тела	22
1.4. Кислотно-основная схема твердой поверхности	27
2. КИСЛОТНО-ОСНОВНЫЕ ПАРАМЕТРЫ ПОВЕРХНОСТИ	
ТВЕРДОФАЗНЫХ СИСТЕМ	32
2.1. Локальная кислотность поверхности твердого тела	32
2.1.1. Спектрофотометрическое определение	
локальной кислотности поверхности	
твердофазныхсистем индикаторным методом	33
2.1.2. Методика анализа локальной кислотности	36
2.2. Распределение центров адсорбции по кислотной силе	
на поверхности твердых веществ	40
2.3. Функция кислотности поверхности	42
2.3.1. Спектрофотометрическое определение функции	
кислотности жидких и твердофазных систем	
индикаторным методом	45
2.3.2. Определение функции кислотности поверхности	
по адсорбции кислотно-основных индикаторов	
методом ЭСДО	49
2.4. Кислотно-основные индикаторы –	
энергетические зонды	53
2.5. Дифференцированная идентификация центров	
Льюиса и Бренстеда на поверхности твердофазных	
систем	56
2.5.1 Адсорбция индикаторов на поверхности	
без изменения рН среды	58

Адсорбция индикаторов на центрах Льюиса	
и Бренстеда обоих типов	58
Адсорбция индикаторов на одноэлектронных	
апротонных центрах с участием молекул воды,	
диссоциирующих по гомолитическому механизму	.58
2.5.2. Адсорбция индикатора на поверхности с	
изменением рН средыЛАНЬ	60
Адсорбция индикатора на диссоциирующих центрах	
Бренстеда	60
Адсорбция индикатора на центрах Льюиса с	
участием молекул воды, диссоциирующих по	
гетеролитическому механизму	.60
3. ПРИРОДА ДИСКРЕТНОСТИ ЭНЕРГЕТИЧЕСКОГО	
И КИСЛОТНО-ОСНОВНОГО СПЕКТРА	
ПОВЕРХНОСТИ ТВЕРДЫХ ВЕЩЕСТВ	62
3.1. Структурно-химические параметры	
поверхностных центров	67
3.1.1 Кислотно-основные центры на поверхности	
халькогенидов цинка	68
3.1.2 Структурно-химические параметры центров	
на поверхности кремнезема	75
4. МЕТОД рН-МЕТРИИ В ИССЛЕДОВАНИИ КИСЛОТНОСТИ	
ПОВЕРХНОСТИ ТВЕРДОФАЗНЫХ СИСТЕМ	.81
4.1. Точки изосостояния поверхности	81
4.2. Кинетика гидратации твердой поверхности	88
5. ЭЛЕКТРОННАЯ ТЕОРИЯ И КИСЛОТНО-ОСНОВНЫЕ	
СВОЙСТВА ПОВЕРХНОСТИ ТВЕРДЫХ ВЕЩЕСТВ	97
5.1. Зонная модель поверхности твердого вещества	
5.2. Быстрые и медленные поверхностные состояния1	
6. АТОМ ВОДОРОДА И КИСЛОТНО-ОСНОВНЫЙ СПЕКТР	
ПОВЕРХНОСТИ	07
7. ПРИМЕРЫ ПРАКТИЧЕСКОГО ПРИМЕНЕНИЯ ИНДИКАТОР	
НОГО МЕТОДА И МЕТОДА рН-МЕТРИИ	22
7.1. Неводные среды	
· · · · · · · · · · · · · · · · · · ·	_

7.2. Объекты неорганического происхождения	125
7.2.1. Исследование поверхности твердых веществ	
в реакциях с полимерами	125
а) Рекомбинационное взаимодействие кислотно-	
основных центров Льюиса при термообработке	
оксида циркония	126
б) Взаимодействие силоксанового каучука	
с поверхностью диоксида титана	130
в) Катализатор низкотемпературной очистки	
газа от паров стирола	133
г) Донорно-акцепторные и влагопоглотительные	
свойства композиционных материалов	
на основе ЭНБС и модифицированных силикагелей.	135
д) Адсорбция клеток Brevibacterium SP-22	
на поверхности кремнеземного носителя	137
7.2.2. Очистка вентиляционных выбросов производства	
оптических материалов	142
7.2.3. Прогнозирование физико-механических	
свойств бетонов с учетом свойств поверхности	
наполнителей и заполнителей	145
7.2.4. Фундаментальные подходы к созданию новых	
природозащитных технологий	149
7.2.5. Взаимопревращение и эволюция донорно-	
акцепторных центров поверхности твердых тел	158
7.2.6. Кислотно-основные центры в межфазных	
взаимодействиях компонентов гетерофазных	
систем	162
7.2.7. Кислотно-основные свойства поверхности	
цинк-сульфидных электролюминофоров	166
7.2.8. Прогнозирование и направленное	
регулирование кислотно-основных свойств	
поверхности твердофазных систем	
7.2.9. Люминофоры фотодинамической терапии	
7.3. Объекты биологического происхождения	179
7.3.1. Кислотно-основные свойства поверхности	
тканей растительных культур	182
7.3.2. Кислотно-основные свойства поверхности	
тканей животного происхождения	191

7.3.3. Влияние электронно-лучевой обработки	
на кислотно-основные свойства поверхности	
мышечной ткани животного происхождения	199
7.4. Кислотно-основные свойства поверхности	
полимерных гелеобразующих материалов на основе акриловой кислоты	
основе акриловой кислоты	213
7.4.1. Влияние сшивающего агента на свойства	
поверхности гидрогелей полиакрилата натрия	
и полиакриламида	221
7.4.2. Метод ЭСДО в исследовании поверхности	
гидрогелей полиакрилата натрия	
и полиакриламида	223
ЗАКЛЮЧЕНИЕ	229
СПИСОК ЛИТЕРАТУРЫ	235

